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Introduction

Concept of the Voronoi tessellation

Given

a set S
elements zi , i = 1, 2, . . . ,K
a distance function d(z ,w), ∀z ,w ∈ S

The Voronoi set Vj is the set of all elements belonging
to S that are closer to zj than to any of the other
elements zi , that is

Vj = {w ∈ S | d(w , zj ) < d(w , zi ), i = 1, . . . ,K , i 6= j}

{V1,V2, . . . ,Vk} is a Voronoi tessellation of S

{zi} are generators of the Voronoi tessellation



Outline CVT Application Previous Method Traditional Multigrid MG/OPT Summary

Introduction

CVT: facts and definitions

Given the Voronoi tessellation {Vi} corresponding to the generators
{zi}

The associated centroids z∗i =

∫
Vi

ρ(y)ydy∫
Vi

ρ(y)dy
, i = 1, . . . ,K
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Introduction

CVT: facts and definitions

Given the Voronoi tessellation {Vi} corresponding to the generators

{zi}, the associated centroids z∗i =

∫
Vi

ρ(y)ydy∫
Vi

ρ(y)dy
, i = 1, . . . ,K

If zi = z∗i , i = 1, . . . ,K we call this kind of tessellation Centroidal
Voronoi Tessellation (CVT)
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Introduction

Examples of CVTs
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Introduction

Constrained CVTs

For each Voronoi region Vi on surfaces S , the associated constrained
mass centroid zci is defined as the solution of the following problems:

min
z∈S

Fi (z), where Fi (z) =

∫
Vi

ρ(x)|x − z |2dx

Courtesy of (Y. Liu, et al.)
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Introduction

Uniqueness of CVTs
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Introduction

Centroidal Voronoi Tessellations as minimizers

Given:

Ω ⊂ RN

A positive integer k

A density function ρ(.) defined on Ω̄

Let

{zi}ki=1 denote any set of k points belonging to Ω̄ and {Vi}ki=1

denote its corresponding Voronoi tessellation

Define the energy functional

G
(
{zi}ki=1

)
=

k∑
i=1

∫
Vi

ρ(y)|y − zi |2 dy.

The minimizer of G necessarily forms a CVT
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Introduction

Some Properties of CVTs

If Ω ⊂ RN is bounded, then G has a global minimizer

Assume that ρ(.) is positive except on a set of measure zero in Ω

then zi 6= zj for i 6= j

For general metrics, existence is provided by the compactness of the
Voronoi regions; uniqueness can also be attained under some
assumptions, e.g., convexity, on the Voronoi regions and the metric
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Introduction

Gersho’s conjecture

For any density function, as the number of points increases, the
distribution of CVT points becomes locally uniform

In 2D, CVT Voronoi regions are always locally congruent regular
hexagons

In 3D, the basic cell of a CVT grid is truncated octahedron
[Du/Wang, CAMWA, 2005]

Gersho’s conjecture is a key observation that helps explain the
effectiveness of CVTs
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Overview

Range of applications

Location optimization:

optimal allocation of resources: mailboxes, bus stops, etc. in a city
distribution/manufacturing centers

Grain/cell growth

Crystal structure

Territorial behavior of animals

Numerical methods

finite volume methods for PDEs
Atmospheric and ocean modeling

Data analysis:

image compression, computer graphics, sound denoting etc
clustering gene expression data, stock market data

Engineering:

vector quantization etc
Statistics (k-means):
classification, minimum variance clustering
data mining
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Overview

Optimal Distribution of Resources

What is the optimal placement of mailboxes in a given region?

A user will use the mailbox nearest to their home

The cost (to the user) of using a mailbox is proportional to the
distance from the users home to the mailbox

The total cost to users as a whole is measured by the distance to the
nearest mailbox averaged over all users in the region

The optimal placement of mailboxes is dened to be the one that
minimizes the total cost to the users

Observation:

The optimal placement of the mail boxes is at the centroids of a
centroidal Voronoi tessellation
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Overview

Cell Division

There are many examples of cells that are polygonal often they can
be identified with a Voronoi, indeed, a centroidal Voronoi
tessellation.

this is especially evident in monolayered or columnar cells, e.g., as in
the early development of a starsh (Asteria pectinifera)

Cell Division

Start with a configuration of cells that, by observation, form a
Voronoi tessellation (this is very commonly the case)
After the cells divide, what is the shape of the new cell arrangement?

Observation:

The new cell arrangement is closely approximated by a centroidal Voronoi
tessellation
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Overview

Territorial Behavior of Animals

A top view photograph, using a polarizing filter, of the territories of the
male Tilapia mossambica
Photograph from: George Barlow; Hexagonal territories, Animal Behavior 22 1974, pp.

876878
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Overview

Finite Volume Methods Having Optimal Truncation Errors

It has been proved that a finite volume scheme based on CVTs and its
dual Delaunay grid is second-order accurate [Du/Ju, Siam J. Numer.
Anal., 2005]

this result holds for general, unstructured CVT grids

this result also holds for finite volume schemes on the sphere
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Lloyd

Lloyd’s Method [Lloyd 1957]

1 Start with the initial set of points {zi}Ki=1

2 Construct the Voronoi tessellation {Vi}Ki=1 of Ω associated with the
points {zi}Ki=1

3 Construct the centers of mass of the Voronoi regions {Vi}Ki=1 found
in Step 2; take centroids as the new set of points {zi}Ki=1

4 Go back to Step 2. Repeat until some convergence criterion is
satisfied

Note:Steps 2 and 3 can both be costly
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Lloyd

Lloyd’s method: analytical convergence results

Assumptions:
1) The domain Ω ⊂ RN is a convex and bounded set with the diameter

diam(Ω) := sup
z,y∈Ω

|z− y| = RΩ < +∞.

2) The density function ρ belongs to L1(Ω) and is positive almost everywhere.
Consequently, we have that

0 < M(Ω) = ‖ρ‖L1(Ω) =

∫
Ω
ρ(y)dy < +∞.

Theorem 1. The Lloyd map is continuous at any of the iterates.

Theorem 2. Given n ∈ N and any initial point Z0 ∈ Ω̄. Let {Zi}∞i=0
be the iterates of Lloyd algorithm starting with Z0. Then

(1) {Zi}∞i=0 is weakly convergent (i.e., lim
i→+∞

∇G(Zi ) = 0) and any limit

point of {Zi}∞i=0 is also a non-degenerate critical point of the
quantization energy G (and thus a CVT).

(2) Moreover, it also holds that lim
i→+∞

‖Zi+1 − Zi‖ = 0.

Du/E./Ju 2006, E./Ju/Rand 2008.
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Lloyd

Accelerating convergence

Lloyd method (fixed-point iteration zn+1 = Tzn) ⇒ only linear
convergence.

In 1D, for strongly log-concave densities the convergence rate of Lloyd’s
iteration was shown to satisfy

r ≈ 1− C

k2

so the method significantly slows down for large values of k.

Empirical results show similar behavior for other densities.

Is speedup possible?
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Lloyd

Newton-type and Multilevel method

Newton-type [Du/E., Num. Lin. Alg. 2006] :

z̃ = z + α(dT |z − I)−1(z − T (z))

This method was shown to converge quadratically for suitable initial
guess.
Multilevel [Du/ E., SINUM 2006, 2008]:

Lloyd Method

A spatial decomposition

A multilevel successive subspace corrections
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Lloyd

Illustration

(Loading CVT motion)


peaks.mp4
Media File (video/mp4)
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Multigrid for Systems of Equations

V-cycle Multigrid for Au = f

Given:
an initial estimate u0

h of the solution u∗h on the fine level
smoother ū ← S(uh, fh, k)
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Multigrid for Systems of Equations

Other Extensions of Multigrid

Full Approximation Scheme (FAS)

Multigrid as a precondioner

the multilevel adaptive technique (MLAT)

Exhibits adaptive mesh refinement

Algebraic Multigrid (AMG)

Constructs the hierarchy level by only utilizing the information from
the algebraic system to be solved

The purpose is to overcome the irregular underlying meshes
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Motivation

Multigrid in Optimization

The necessary condition to solve min
z

1

2
zTAz − f T z is to solve

Az = f

The necessary condition to solve a more general optimization
problem min

z
f (z) is to solve a nonlinear system of equation

∇f (z) = 0.

One approach to solve systems of nonlinear equations is Full
Approximation Scheme (FAS) which is a generalization of the
traditional multigrid.

In our approach, we choose multigrid-based optimization
(MG/OPT) framework which relies explicitly on optimization models
as subproblems on coarser grids.
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Motivation

Advantages of MG/OPT

MG/OPT can deal with more general problems in an optimization
perspective, in particular, it is able to handle inequality constraints
in a natural way.

MG/OPT has a better guarantees of convergence than using
traditional multigrid for a system of equations.

for a class of optimization problems governed by differential
equations, multigrid will be better suited to the explicit optimization
model rather than underlying differential equation when it is not
elliptic.
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Setting

Mutigrid Optimization framework (MG/OPT)

Optimize a high-resolution model:

minimize fh(zh)
subject to ah ≤ 0

An available easier-to-solve low-resolution model:

minimize fH(zH)
subject to âH ≤ 0
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Setting

MG/OPT components:

Given min
z

f (z) with initial guess z̄ , k -number of iterations, let

OPT be a convergent optimization algorithm:

z+ ← OPT(f (z), z̄, k)

h: fine grid; H: coarse grid

a high-fidelity model fh

a low-fidelity model fH

a downdate operator IHh for the variables zh

an update operator I hH
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Algorithm

Multigrid Optimization Algorithm [S.G. Nash 2000]
(MG/OPT: Unconstrained)

Given:
an initial estimate z0

h of the solution z∗h on the fine level
Integers k1 and k2 satisfying k1 + k2 > 0
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Algorithm

Multigrid Optimization Algorithm (MG/OPT: Constrained)

On the fine level, solve:

min
zh

fh(zh)

subject to ah(zh) ≤ 0

Set a downdate operator JHh for the Lagrangian Multipliers λh
Construct the shifted model

z̄H = IHh z̄h

λ̄H = JHh λ̄h

v̄ = ∇LH(z̄H , λ̄H)− IHh ∇Lh(z̄h, λ̄h)

fs(zH) = fH(zH)− v̄T zH

s̄ = aH(z̄H)− JHh ah(z̄h)

as(zH) = aH(zH)− s̄

On the coarse level,

min
zH

fs(zH)

subject to as(zH) ≤ 0
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Convergence and Descent

Convergence

If

OPT is convergent

The objective function and constraints are continuously differentiable

Then

MG/OPT converges in the same sense as OPT
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Convergence and Descent

Descent:
Unconstrained version

The search direction eh from the recursion step will be a descent
direction for fh at z1,h if

I hH = C (IHh )T

fs(z2,H) < fs(z1,H)

eTH∇2fH(z1,H + αeH)eH > 0, for 0 ≤ α ≤ 1
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Convergence and Descent

Descent:
Equality Constrained version

The search direction eh from the recursion step is guaranteed to be a
descent direction for the merit function Mh at z1,h if

Ms(z+
H ) < Ms(z̄H)

vT∇2fH(zH)v for v in the null space of ∇aH(xH)

ρ is large enough so that eTH∇2Ms(z̄H + ηeH)eH > 0 for 0 ≤ η ≤ 1
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Applying MG/OPT to CVT

MG/OPT setup

We have chosen OPT to be the truncated-Newton algorithm in our
experiments

1-D case:
Downdate from finer to coarser grid:

Solution restriction (injection): [IHh vh]i = v2i
h , i = 1, 2, . . . , k/2

Gradient restriction (scaled full weighting):

[̂IHh vh]i = 1
2
v2i−1
h + v2i

h + 1
2
v2i+1
h , i = 1, 2, . . . , k/2

Update from coarser to finer grid: I hH = (ÎHh )T

2-D case:
Downdate from finer to coarser grid:

Solution restriction is performed by injection

Gradient restriction: [̂IHh vh]i =
∑

j α
i
jv

j
h, where αi

i = 1 and αi
j = 1

2
for

any j s.t. zj is a fine node sharing an edge with zi in the fine level
triangulation

Update from coarser to finer grid: I hH = 4(ÎHh )T
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1-D CVT

Convergence Result on 1-D CVT

Blue: MG/OPT; Red: OPT; Green: Lloyd
ρ(y) = 1

ρ(y) = 6y2e−2y3
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1-D CVT

Convergence Result on 1-D CVT (cont’d)

Solving problems of increasing size, MG/OPT versus OPT (ρ(y) = 1).
Blue: MG/Opt, Red: OPT;

Similar results for linear and nonlinear densities
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1-D CVT

Comparison with Multilevel-Lloyd

Convergence factors for MG/OPT vs. Multilevel-Lloyd ρ(y) = 1; Blue:
MG/OPT; Red: Multilevel-Lloyd
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2-D CVT

Convergence Result on 2-D CVT based on triangular
domain

Red: Opt; Blue: MG/OPT; ρ(x) = 1

Di/Emelianenko/Nash, NMTMA, 2012
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Results and challenges

CVT is in the heart of many applications and the number is growing:
computer science, physics, social sciences, biology, engineering ...

Tremendous progress has been made in the last decade, but many
questions remain unsolved, both theoretical and numerical.

The main advantage of MG/OPT is its superior convergence speed,
and the fact that it preserves low convergence factor regardless of
the problem size.

MG/OPT

The simplicity of its design and the results of preliminary tests
suggest that the method is generalizable to higher dimensions, which
is the subject of further investigations
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Future Work

Develop MG/OPT for bound constrained setting with user
requirements comparable to those for unconstrained setting.

Implement MG/OPT for higher dimensional CVT problems with
nontrivial densities and random initial configurations.

Analyze the properties of the Hessian matrix for general CVT
configurations.

Future work also includes application of this technique to various
scientific and engineering applications, including image analysis and
grid generation.

THANKS!
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